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A dynamical model of a non-antagonistic evolutionary game for two coalitions is considered. The model features an infinite time 
span and discounted payoff functionals. A solution is presented using differential game theory. The solution is based on the 
construction of a value function for auxiliary antagonistic differential games and uses an approximate grid scheme from the theory 
of generalized solutions of the Hamilton-Jacobi equations. Together with the value functions the optimal guaranteeing procedures 
for control on the grid arc computed and the Nash dynamic equilibrium is constructed. The behaviour of trajectories generated 
by the guaranteeing controls is investigated. Examples are given. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  A N D  M E T H O D S  O F  S O L V I N G  I T  

We consider a game-theory model of the interaction between two large groups (coalitions or populations) 
of participants (individuals) over a prolonged (infinite) time interval. The dynamical system is motivated 
by differential game models [1--4] and evolutionary games [5-12] associated with problems of economic 
change [6-9] and population dynamics [10]. We use approaches [12] for constructing controllable 
dynamics and formulations of non-antagonistic differential games. The problem is formulated in terms 
of the theory of positional differential games [2-4] and is solved by the method of generalized (minimax, 
viscous) solutions of the Hamilton-Jacobi equations [13-16]. 

It is assumed that the participants in each coalition have just two actions (strategies) and that at 
any instant of the time they can only adhere to one of them. It is assumed that the participants of the 
different coalitions meet (form a game pair) in a random manner. Here the payoffs of the coalition 
participants are determined by payoff matrices. Local (short-term) payoffs of the coalitions are specified 
by the corresponding mathematical expectations (mean payoffs). The global (long-term) interests of 
the coalitions are represented by integrals of the mathematical expectations over an infinite time 
interval with an appropriate discounting coefficient [6, 17, 18]. The participants can change their 
actions in accordance with information signals. The corresponding evolutionary dynamics of the 
coalitions are described by a system of differential equations with controlling parameters (signals). 
The controls can be chosen in any manner according to feedback based on information on the 
unfolding dynamical position of the system. The aims of the coalitions are to maximize their own 
global interests. The problem of the corresponding non-antagonistic game is to construct optimal 
guaranteeing positional control procedures for the coalitions and the Nash dynamical equilibrium 
situation. 

The non-antagonistic game is considered in terms of the theory of positional differential games [2-4]. 
Following [4] the Nash dynamical equilibrium situation is constructed using solutions of two auxiliary 
antagonistic differential games. The solution of the antagonistic games is related to the construction 
of value functions which are generalized solutions to first-order partial differential equations [13-16, 
19]. The value functions are calculated approximately in terms of the theory of generalized solutions 
of the Hamilton-Jacobi equations. The appropriate computational procedure is an approximational 
grid scheme with ,;uitable finite-difference operators [17-18, 20-27]. The values of the optimal 
guaranteeing synthesis are calculated in parallel with the value functions. It is important to note that 
the optimal guaranteeing control procedures for the coalitions generate system trajectories that converge 
either to a Nash static equilibrium situation or to positions in which the values of the global payoffs 
are better than at points of static equilibrium. 
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2. THE GAME DYNAMICS MODEL 

We consider a dynamical system describing the game interactions of two coalitions of participants. 
Using the well-known economic interpretation [5] one can suppose, for example, that one coalition 
consists of sellers, and the other of purchasers. At each instant of time the participants can choose one 
of two actions: the sellers can try to sell at a high or a low price, and the buyers can buy or refuse to 
buy. The action of the sellers is denoted by the index i" the value i = 1 corresponds to a high price, and 
i = 2 to a low price. The action of the buyers is similarly denoted by j: the value j = 1 corresponds to 
buying and j = 2 to refusing to buy. 

We consider an arbitrary pair consisting of participants from the two coalitions. This pair can be 
represented as a situation (i,j) generated by actions i and/. We take the payoffs of the participants of 
the first and second coalitions to be determined by the coefficients a~j of the matricesA m = {a'~ } (m 
= 1, 2), respectively. 

Let the first coalition consist of N participants. The symbol Ni(t) denotes the number of participants 
choosing action i, i = 1, 2 at time t. Obviously N = Nl(t)  + N2(t). The second coalition similarly consists 
of M participants and Mj(t) of them adopt strategyj, j = 1, 2 so that M = Ml(t) + M2(t). 

We suppose there is a multistep dynamical process in which the participants can change their actions, 
described by the system of equations 

Ni(t  + h) = Ni(t  ) + (- l) i (nl2(t)h - n2t (t)h), i = 1,2 (2.1) 

Mj (t + h) = Mj (t) + (-1) j (ml2 (t)h - m21 (t)h), j = 1, 2 

A feature of the dynamics of (2.1) is that the number of participants which can change their action 
at time t is proportional to the step h, 0 < h ~< 1. More precisely, the numbers ntd(t)h and m ~ t ) h  denote 
the number of participants in each coalition which change from action k to action 1, k, 1 = 1, 2, k ;~ I. 

This fact, that only a fraction of members of the coalitions, proportional to the step h, can change 
their action at the actual time t, has the following interpretation. For example, such an inertia can be 
explained by only a small number of the individuals being active and amenable to changing their 
behaviour. An alternative explanation would be the presence of a "queue" in those cases when large 
groups of participants wish to change their actions. 

We also introduce the following natural restrictions on the numbers of participants nkt(t), mkt(t) 
potentially wishing to change their strategies 

0 <~ nkt(t) ~ Nk(t), 0 <- mkt(t) ~ Mk(t) (2.2) 

We assume that at each time t the members of the different coalitions form game pairs in a random 
manner with equal probabilities. The probability that a randomly chosen pair forms the situation (i,j) 
is equal to 

N i (t)Mj (t) (2.3) 
PiJ(t) = NM 

It is easy to check the probabilistic properties 

Pij(t)~O, ~, Pij(t)=l, i , j = l , 2  (2.4) 
i.j 

One can transfer from the multistep system (2.1) linking the quantities N/(t + h), Mj(t + h) with the 
N/(t), Mj(t) to a system for the probabilitiespij(t + h) andpij(t) 

Pi j( t+h) = N i ( t+h)Mj  ( t+h)  
NM = PO ( t ) -  Pij(t)ui(t)h + (2.5) 

+ Pkj (t)ui (t)h - Pij (t)Dj (t)h + Pit (t)Dt (t)h + ~0(t)h 2 

nik (t) mjl (t) 
U i ( t ) = ~ i ( t ) ,  Dj( t )= Mj( t )  

q)(t) = (-nik(t)+nki(t))(mjl( t)+ mli(t)), Iq~(t)l~ < 1 
NM 
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i , k ,  j ~ l ,  i , j , k , l = l , 2  

We transfer  f rom the mult is tep system (2.5) to a system of  ordinary differential  equat ions  

J¢l "- - -XlUl  -t" X3U 2 -- X l l )  I + X2'D 2 

J(2 ---- - -X2Ut  + X4U2 + XI'UI --  X2'U2 (2.6) 

jC 3 - -  XlUl -- X3U 2 --  X3'U i + X4'U 2 

jC 4 .-~ X2U I -- X4U 2 + X3'U I --  X4'U 2 

(Xl = PI1, x2 =/712, X3 = P21, x4 = P22) 

O<~ui<<-l, i = 1 , 2 ;  O~<~j~<l ,  j = l , 2  (2.7) 

Remark& 1. The qlJantities ui, 1~] ill (2.6) are dimensionless, and the 0 and 1 in (2.7) may be interpreted as 
controlling signals. 

2. The dynamical ~¢stem (2.6), (2.7) has two first integrals 

X I + X 2 + X 3 + X 4 = 1, X Ix  4 -- X2X 3 ---- 0 (2.8) 

and satisfies the integral constraints 

O<~xi~i ,  i = 1 , 2 , 3 , 4  (2.9) 

Hence it reduces to the second-order system 

x=-xu l  +( l -x )u2 ,  Y=-Y~I +(1-Y)X~2 (2.10) 

Here x = Xl + x2 6' = xt + x3) is the probability that a player from the first (second) coalition has chosen the 
first strategy. 

3. The controlling parameters u, 

u = x ( l - u i ) + ( l - x ) u 2 ,  O~ui <~l, i=1,2 

"0=y( l -Di )+( l -Y)D2,  0~<Dj~<l, j = l , 2  

satisfy the constraints 

u~l ,  ~ e l ,  1=[0,1] (2.11) 

and system (2.10) is equivalent to the system 

~ = - x + u ,  y = - y + ~  (2.12) 

System (2.12) with conditions (2.11) satisfies the integral restrictions 

"x e !, y e I (2.13) 

The maximum system velocities 111 and V2 for each coordinate under the restrictions (2.11) and (2.13) are unity 

V I = maxl-x+ul= 1, V 2 = maxl-y+~l= 1 (2.14) 
X,U y,D 

4. System (2.12) possesses the asymptotic stability property 

Ix 1 (t) - x 2 (DI~Ix I - x 21e -t , ly ! (t) - Y2 (t)l~<lyl - Y2 le-t (2.15) 

Here (xi(t),yi(t)) is a trajectory of system (2.12) generated by a pair of measurable controls (u(s), ~(s)), u(s): [0, 
+,o) ~ l, ~(s): [0, +**) ~ I from the initial position (xi, yi) ~ l × l, i = 1, 2 

t t 
X~ ( t )  = xi  e ' ' t  + Je {S - t )u ( s )d s ,  Yi ( t )  = .,vie - t  + ~e(S-t) 'o(s)d$ 

o o 



924 A.M. Taras'yev 

3. LOCAL AND GLOBAL PAYOFF FUNCTIONALS 

We consider the problem of evaluating the interests of the coalitions. It is natural to suppose that 
the local (short-term) payoff is given by the mathematical expectation associated with the corresponding 
payoff matrix and is calculated at the actual time t. Specifically, the quality of state (x(t),y(t)) of dynamical 
system (2.12) is valued for the first (m = 1) and second (m = 2) coalitions by the mathematical 
expectations 

E m (x(t) ,  y(t))  = a~x( t )y( t )  + a~x(t)(1 -. y(t)) + a~ (1 - x(t))y( t)  + 

+a~2 (1 - x(t))( l-  y(t)) = Cmx(t)y(t) - O~nX(t-) --. tX~y(t) + a~2 

(3.1) 

Here 

_ a m ra  Cra = a~ - a~ 2 a~l + a~n2 , 0~ n = a~2 - 1 2 ,  13~2 ~-- a~2 - a~l (3.2) 

We recall that the quantities (3.2) govern the coordinates of the Nash equilibrium situation in a 
bimatrix game [5]. 

We consider the dynamical system (2.12) in an infinite time interval [0, +oo), as is assumed in 
the theory of evolutionary games (evolutionary changes) [6-12]. Let (x(-), y(.)) = {(x(t), y(t)): t ~ [0, 
+oo)] be an arbitrary trajectory of system (2.12). The value of the trajectory is estimated by improper 
integral functionals with discounting. The functionals have the form 

+oo 

Jm = Jm(x('),y(')) = [ e-~Em(x(t) ,  y(t))dt, m = 1,2 (3.3) 
o 

It is natural to suppose that the functionals (3.3) specify a long-term (global) payoff for the coalition. 
The parameter k > 0 is called the discounting coefficient and ensures the discounting of short-term 
payoffs at future times. Funetionals of this sort are traditional in models of mathematical economics 
[6, 17]. We note that integrals (3.3) coverage because the functions Em are bounded. 

Integrals (3.3) can be normalized by multiplying them by k and interpreting the result as a special 
kind of average of the mathematical expectation E *  over the interval [0, +.o) 

+r,o 

E* L1 m ~, m * * = ~. ~ e-X~ Pij(t)dt (3.4) = = aij Pq, Pij 
i , j  0 

0~<p~j~<l, ~ p/j=l,  i , j = l , 2  
i , j  

Herep/~ is the probability of the game situation (i,j) averaged over the infinite time interval [0, +oo). 

4. NASH DYNAMICAL EQUILIBRIUM 

The aims of the coalitions are to maximize their functionals (3.3). We shall consider a formulation 
of the associated non-coalition game using the theory of positional differential games [2-4]. According 
to one of the constructions in [4] the equilibrium for a non-coalition differential game (2.12), (3.3) can 
be obtained in the class of control procedures U = u(t ,x ,y ,  e), V = ~(t ,x ,y ,  e) by the feedback principle 
in the solution of guaranteed optimal control problems for each coalition. 

We will give the formulation for defining the Nash equilibrium situation. 

Definition 1. The pair of positional strategies (U °, F °) is said to be a Nash equilibrium (e-equilibrium) 
for the given initial position (x0,Y0) ~ I x I if for any positional strategies U and Vand for any trajectories 
generated by the pairs of strategies (x0, Y0) from the point (U °, V°), (U, F°), (U °, V) 

(x'°(-),y°('))~x0, (Xm('),Ym('))~ Xm 

Xo= X(xo ,Yo ,U° ,V°) ,  Xl = X(xo,Yo,U,V°) ,  X2 = X(xo ,Yo ,U° ,V  ") 

the inequalities 
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Jm ( x° ('), yO (.)) >~ Jm (xm ('), Ym ( '))-  e (4.1) 

are satisfied (with the parameter e = 0 for equilibrium and e > 0 for eequilibrium). 
We will indicate a possible construction in which the Nash equilibrium as specified in Definition 1 

is composed of solutions to auxiliary problems of optimal guaranteed control (antagonistic games). We 
consider two differential games Fro. In game Fm the problem for coalition m is to maximize the functional 
Jm, m = 1, 2 (3.3) along the trajectories of system (2.12), and the aim of the second coalition is the 
opposite. 

We suppose that the games Fm are solved, i.e. the value functions Wm = WIn(X, y), (X, y) e I X I are 
calculated,, the optimal guaranteeing positional control procedures (g" uaranteeing strategl ) l ' e s "  U~, = 
u~(t, x, y, e), V~2 = ~°(t, x, y, e) maximizing Jm are constructed, together with the adverse actions of the 
coalitions towards one ano the r~ the  positional control procedures ("punishing strategies") U~2 = u°(t, 
x, y, e), V~I = ~°(t, x, y, e) minimizing Jm. 

Suppose that an arbitrary initial position (x0, Y0) e I x I has been specified, the parameter e > 0, and 
the trajectory (x°(.),y°(-)) e X(xo, Yo, U~I, 1/~2), generated by the guaranteeing strategies U~I, 1~2 has been 
determined. It is natural to say that the trajectory (x°(.),y°(.)) is acceptable to both coalitions. We specify 
a time TE > 0 by the conditions 

T~ > ~ l n ( ~ ] ,  R=maxmaxlEm(x'y)l(~,y) m 

In the interval [0, T~] we define an acceptable step-by-step motion (xe(.), ye(.)) satisfying the condition 

max II(x ° ( t ) ,y° ( t ) ) -  (x ~(t),ye(t))ll< e 
te[0,Ttl 

The sL~mbols u~(t): [0, To) --~ l and a~(t): [0, Te) --~ l denote realizations of guaranteeing strategies U~I 
and I~2 for the motion (x~(-), ye(.)). 

We construct position strategies U °, V ° from the guaranteeing strategies U~I and ~ and the punishing 
strategies U~z and V ° 

= Iu~(t), if [(x,y)-(xt(t) ,y~(t))  < e 
U°=u°( t ' x 'Y 'e )  [u°(t,x,y,e),  otherwise 

(4.2) 

I ~ ( t ) ,  if (x,y)-(x~(t),ye(t))[ < e (4.3) 
V° = 9°(t 'x 'Y'8) = [9°(t ,x,y,e) ,  otherwise 

As in [4] one can prove the following assertion. 

Proposition 1. The pair of positional strategies (U °, V °) specified by relations (4.2), (4.3) is a Nash e- 
equilibrium in the sense of Definition 1. 

Remark 5. In the Nash equilibrium pair of positional strategies (4.2), (4.3) we used the acceptable trajectory 
E 0 (x (.)),y (.)) generated by the guaranteeing strategies U1, V~2. According to [4], when constructing (4.2) and (4.3) 

one can use other trajectories, the manifolds of which exhaust all the possible Nash equilibrium situations. 

Remark 6. Dependhlg on the formulation of the problem, the parameter e can be interpreted either as the level 
of confidence of risk or the degree (altruism) of the coalition. 

5. VALUE F U N C T I O N S  F O R  GAMES OF U N R E S T R I C T E D  L E N G T H  

It follows from relations (4.2) and (4.3) that the fundamental constructions for obtaining the 
equilibrium strategies U °, V ° are solutions of single-type differential games Fro. To fix our ideas we will 
consider a differential game F1 of this sort. In this game one must guarantee the maximization of 
functional J~ (3.3) along the traj ectories (x(.), y(.)) of system (2.12). It is known [2, 3] that a value function 
(x0, Y0) --~ wl (x0, Y0) exists in the differential game (2.12), (3.3) which associates every position (x0, Y0) 
with the value of the saddle point 
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Wl(xo,y o) = sup inf Jl(x(.), y(.)) = 
u (x(.),y(.))GX(xo,~,U) 

(5.1) 
=inf sup Jl(x(.), y(.)) 

V (x(.),y(.) V)EX(xo,Yo,V) 

The symbols X(xo, Yo, U), X(xo, Yo, V) denote trajectories of system (2.12) generated by positional 
strategies U = u(t ,x,y,  e), V = ~(t ,x,y,  e). 

According to [2, 3] the guaranteeing strategy U~I and the punishing strategy 1~1 are determined by 
the value function Wl. 

We will indicate some properties of the value function wl. 

Property 1. The value function wl is defined and bounded in the unit square I x I 

max Iwl(x,y)l<. K (x,y)¢l×i "~-', K= max IEj(x,y)l (5.2) 
(x,y)El×! 

In a differential game of unbounded length of general form one can establish [17, 18] a Hrlder 
continuity property for the value function. In the case of dynamical system (2.12) possessing the 
asymptotic stability property (Remark 4) it can be proved that the function wl satisfies a Lipschitz 
condition. In particular, we have the following assertion. 

Property 2. The Lipschitz condition 

IWI(Xl,Yl)--W~(X2,Y2)I<~ 1----~k (Ix, --X21+Iyl --y21) (5.3) 

is satisfied by the value function wl. 

6. THE HAMILTON-JACOBI  EQUATION AND D I F F E R E N T I A L  
INEQUALITIES FOR THE VALUE FUNCTION 

The fundamental properties of the value function wl are stability properties expressing the optimality 
principle of dynamical programming. We recall that stability properties amount to the existence of non- 
decreasing and non-increasing directions for the value function coordinated with the directions of the 
velocities of the dynamical system. At differentiable points of the value function the optimality principle 
reduces to a Hamilton-Jacobi (Bellman-Isaacs) type first-order partial differential equation. In the 
differential game (2.12), (3.3) the Hamilton-Jaeobi equation has the form 

3Wl x ~wj + f 3wl ~ • 3wl -~'wI(X,Y)-"~- x --~yY max~O,'~x~+mm(O,-'~y}+El(X,,'=O (6.1) 

The expression 

H I (x, y, s) = -s ix  - s2y + max{0, $1 } + min{0, S 2 } + E I (x, y) (6.2) 

is called the Hamiltonian of problem (2.12), (3.3), s = (Sl, s2). 
At points where the value function is non-differentiable, the following inequalities must be satisfied 

by derivatives along the directions (dual derivatives) [14, 18, 19] 

D*w I (x, y)l (s) = su~ ((s, h) - 3_w I (x, y)l(h)) >~ -kw t (x, y) + H I (x, y, s) (6.3) 

D, wI(x,y)I(s)= inf~((s,h)-~+wl(x,y)l(h))<~-kWl(X,y)+ Hl(X,y,s) 
h~R" 

(6.4) 

The lower and upper directional derivatives for the function wl are governed by the relations 

3_w I (x, y)l (h) = lim inf wl (x + 8h l, y + 8h 2) - wl (x, y) 
s~,o 8 
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i i "  ,,,p wl (x + 8h I , y + 8h 2 ) - w I (x, y) 3+wl (x, y)l (h) 
'h'A" 8 

Remark 7. We know [14, 17-19] that inequalities (6.3) and (6.4) uniquely define the generalized solution of 
Eq. (6.1) (the value function) in the class of bounded functions satisfying the Lipschitz condition. Inequality (6.4) 
expresses the u-stability property of the function wl, and (6.3) the v-stability property. 

Remark 8. For piexewise-smooth functions 

w I (x ,y )  = m!nmaxcOij(x,y) = m a x m ! n % j ( x , y )  
1 j r 

Wl(X , , y . )=cOi j (x , , y . ) ,  i e l ( x , , y , ) ,  j E J ( x , , y , ) ,  ( x , y ) E O e ( x , , y , )  

O t (x, ,y. ) = {(x,y) e ! × l: max{Ix- x, I,ly- y, I} < e} 

the directional and dual derivatives can be computed from the formulae 

~_Wl(X ,y ) l (h )=~+wl(x , y ) l (h )=l~nmax(b i j , h )=maxmi in (bq ,h )  

b,- ' ay )' h=(h,,h~) 

+**, if  s ~ , ff  s ~ D 

C=:NB i, B i=co j{bq} ,  D = N B j ,  Bj=coi{bi j }  
i j 

We will indicate cases when the value function wl is differentiable and can be found by the method of undeter- 
mined coefficients. 

Proposi t ion  2. V~= assume that the coefficients of the matrixA 1 = {a/~} satisfy the inequalities 

aI>1+7~ a~0 ,  c~>0 
C ! 2 + k '  

Then the value function wl is given the relations 

w t (x ,  y )  = Gxy  - T l x  - Y2Y + g 

1 _ (71 ot I Ot / ' a22 

(6.5) 

(6.6) 

Here  the extrema is Eq. (6.1) are zero 

max{0, 0wl ~ " 1"0 ~wl ] ax j : o ,  mtn~ , - - ~ - - [ : 0  

which shows the preservation of the sign of the gradient components Vw 1 = (~w1/~x , (~Wl/~y) of the 
functions wa in the square I x I 

~wl = Gx- Tl <~ O, ~wl 3x ~ --- Gx  - ~12 ~ 0 (6.7) 

Remark 9. Examples of matrices satisfying conditions (6.5) include not only matrices with a dominant second 
row, but also matrices with a dominant first column. For example, the matrix 

a--1132 
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satisfies inequalities (6.5) when 0 <~ k ~< 1. 

Conditions similar to relations (6.5) may be obtained for other combinations of inequalities in (6.7). 
In the case when, for example, the conditions 

o< l<l, clio q 

are satisfied, the value function wl is not differentiable and has no analytic description. In this case its 
structure is rather complex. Below we therefore present an approximation scheme for constructing the 
value function wa as a generalized solution of the Hamilton-Jacobi equation (6.1). 

7. A P P R O X I M A T I O N  S C H E M E S  F O R  C O N S T R U C T I N G  V A L U E  
F U N C T I O N S  AND O P T I M A L  P O S I T I O N A L  S T R A T E G I E S  

We consider a discrete approximation to Eq. (6.1). We fix the step h e (0, 1/~.) for subdividing the 
time interval [0, +**). 

Definition 2. An equation of the form 

-wl,h(x,y)+hEl(x,y)+(1-Lh)maxminwlh(X+h(~x+u),y+h(-y+~))=O (7 .1 )  
u ~ . l  " o e l  - -  ' 

for the function Wl,h: I x I ~ R is said to be a discrete approximation of the Hamilton-Jacobi (7.1), 
and its solution Wl~ is called a lower approximation of the generalized solution (the value function) wa 
of  F_,q. (7.1). 

We derive the following assertion about the convergence of the approximate solution Wl~ [17, 18]. 
We also note that similar approximation problems for value functions were considered in [26, 27]. 

Proposition 3. A unique solution _W_l, h of Eq. (7.1) exists. As h$0 the functions Wl,~ converge to the 
value function wl in the metric of the space of continuous functions and the estimate 

max IWl.h(X,y ) -  W|(X.y)I< Lh y2 
( x , y ) E l x l  

(7.2) 

holds. The solution wl~ can be found by the method of successive approximations 

w~,hfx, y) = (n, w~,~ l )(x,y) (7.3) 

(Fl,w)(x, y) = hE l (x, y) + (I - kh) max min w(x + h(-x + u), y + h(-y + ~) ) 
u E i  ~ !  

(7.4) 

As an initial approximation for the iterative procedure (7.3), (7.4) one can choose any bounded and 
Lipschitz-continuous function. For example, it is natural to put 

w~h(x,y)=O, or W~h(x,y)=El(xry) (7.5) 

l'I, is a contraction operator with contraction coefficient (1 - Zh) ,  and hence the estimate 

max Iw I h(X,y)--w~h(x,y)l<~ K(1-Xh)"  
( x , y ) e l x l  - -  ' m , 

(7.6) 

holds. For a sufficiently large number of iterations m estimates (7.2) and (7.6) ensure that the condition 

max Iw~,h(x,y ) -  wl(x,y)l< Lh y2 (7.7) 
( x , y ) ~ l x l  

is satisfied. 
We note that in procedure (7.3), (7.4) the control u'T;~ producing the exterior maximum 

U m l.h = U~,h (x, y) = arg max min w~.~ t (x + h(-x + u), y + h(-y + D)) (7.8) 
u ~ l  ~ 1  ~ ' 
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in (7.4) is calculated along with the approximate values w~'~ (x, y) for the value function wl(x,  y) .  
It can be shown that the positional strategy u'~ (7.8) is an approximation to the guaranteeing strategy 

U~I for the first coalLition. The following assertion is moreover valid. 

Proposition 4. For any e > 0 one can find a subdivision step h e (0, l/k) and an iterationnumber m 
such that for all trajectories (x(.),y(.)), generated by the positional strategies uri~l~ and arbitrary measurable 
controls ~(s): [0, +**) ---> I from the initial condition (x0, Y0), the limit 

mh 

e-  E t ( x ( t ) , y ( t ) ) a t  > wt(x0,Y0)- t (7.9) 
0 

holds. 
Alongside Eq. (7.1), which contains a maximum operator, one can consider an equation with a minimax 

operator for the upper approximation Wx~. The solution w-l~ can also be found by the method of 
successive approximations from formulae for the approximation ~ similar to (7.3)-(7.5). Here the 
punishment strategy x) ° of the second coalition approximates the positional strategy a)~,h which achieves 
outer minimum and minimax relations similar to (7.4) and has the form 

~m = ~.h (X, y) = arg min max ~lm.~ l ( X + h ( -  x + u ), y + h ( -  y + x) ) ) 
l ,h  , vJel u ¢ l  ' 

(7.10) 

Remark 10. For the upper approximation ~1,~ and punishment strategy x~n¢, one can formulate assertions similar 
to Propositions 3 and 4. 

Remark 11. In the s4~,ond game F2 the approximations w ~'~, ~'~,~ for the value function w2 and the appro~dmations 
~'~, u~.,~ for the guaranteeing strategy V~2 and punishment strategy U~2 are calculated similarly. 

8. GRID IMPLEMENTATIONS OF ALGORITHMS FOR CONSTRUCTING 
VALUE FUNCTIONS AND OPTIMAL POSITIONAL STRATEGIES 

To implement the iterational procedure (7.3)-(7.5) and similar procedures for the equation with the 
minimax operator :numerically, a grid approximation is used for the iterational functions w~ ,  W~h, 
ff~'~, ff~'~ and associated positional strategies u'~h, a~'~, a~'~,~, u~'h. The grid approximations for these 
functions are denoted by the same symbols. We note that formally the calculations for the maximin 
and minimax should be performed at all points (x, y) of the phase state square I x L In order to make 
the procedure finite a grid is introduced and the calculations are only performed at its nodes, and are 
linearly interpolated over the whole square in accordance with its specified triangulation ft. 

We will describe the proposed numerical procedure. Let the following discretization steps be given: 
the time subdivision interval h, the subdivision steps Ax(Ay) in the square I x I for variables x (y), and 
the subdivision steps Ap(Aq) in the interval I for the control u (a~). 

We shall assume that the steps h, Ax, Ay, Ap, At/are related as follows: 

Ax=~/l(h), Ay=¥2(h),  Ap=~l/3(h), Aq=~/4(h) 

Here v i (h )  are infinitesimally small functions: ~i(h)$O when h$0, i = 1, 2, 3, 4. 
We consider the fixed grid G R  

G R = { ( x i , Y j ) :  x i = i A x ,  y j = j A y } ,  ( x i , Y j ) E l x l  

(8.1) 

All the calculations are performed at its nodes (xi, yj). For example, the lower approximation in Eq. 
(7.1) is calculated from the formulae 

w'l~h ( x i , yj ) = hE I ( x i , yi ) + (1 - Lh) max min W'l'-h I ( Xik, Y~t ) (8.2) 
" k I - - "  " 

Xik  = X i + h ( - x  i + k A p ) ,  Y j l  = Y j  + h ( - y j  + I A q )  

Here the values of the functions at the points (x~, Yjt) are linear interpolations of the values given at 
the nodes (xi, Yj) of file grid G R  according to the specified triangulation f2 of the square I x I into simplexes 
of type S+ and S_ 
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S÷ = S+ (x i , yj ) = co{(xi, yj ), (x i + Ax, yj ), (x i, yj + Ay)} 

S_ = S_ (x i, yj ) = co{(x/+ At, yj ), (x i, yj + Ay), (x i + At, yj + Ay)} 

The grid functions w'~,~(xi, yj), W~h(Xi, yj), w~(xi, yj) are similarly from the corresponding maximum 
and minimax formulae. 

Using the results of [20-23] one can prove the following assertion on the convergence of  grid 
approximation schemes of  the form (8.2) 

Proposition 5. Suppose the functions in (8.1) are given by the relations 

~lli(h)=Ki hi+a, a>~O, i=1,2,  ~j (h)=Kjh ,  j = 3 , 4  (8.3) 

i.e. the functions ~l(h), ¥2(h) are either linear in the variable h (when a = 0) or have a higher order 
of smallness (when a > 0), while the functions ¥3(h), ~4(h) are linear. Then grid approximation scheme 
(8.2) converges when n ---> **, h$0 and the convergence estimate is a quantity of  order h v2. 

We will consider the possibility of using the parameters k and I which realize the outer extrema in 
the maximin and minimax relations of the form (8.2) as approximations for the guaranteeing strategies 
U~I, V~2 and punishment strategies U~2, 1/~1. We give a relation for the grid function u~'~ approximating 
the strategy U~x 

U~, h (X i , y j  ) = k* (x i, y~)Ap (8.4) 

Here k*(xi, Yi) is the argument of the outer extremum in (8.2). 
The approxLrnate strategies ~ h ,  U~h, ~T~, are determined in the same way as (8.4) from the 

corresponding maximin and minimax formulae. 
We note that the strategies u lm~, ~2m~, u ~ ,  ~ lm~, are defined only at the nodes (xi, y.) of the grid GR , . . . , J . " 
We will consider two methods of interpolating these values: plecewlse-constant and linear. One can 

prove the following assertion regarding, for example, the strategy u'~h. 

Proposition 6. Let a > 0 in (8.3), i.e. ¥1(h), ¥2(h) are functions of higher order of  smallness than h. 
Then for any e > 0 one can find a subdivision step h e (0, lfk) and an iteration number m such that 
for all trajectories (x(-), y(.)) generated by piecewise-constant interpolations u ~  of the strategy values 
u~¢~ (xi, yj) (8.4) and an arbitrary measurable control ~(s), ~ ~ I from the initial position (x0, Y0), the 
estimate (7.9) is satisfied. 

In order to formulate a similar assertion when a = 0 it is necessary to introduce the following additional 
condition. 

Hypothesis 1 (on the structure of  the solution ). Let a = 0, i.e. ¥1 (h) = Klh, ~2(h ) = K2h, r > max {K1, 
K2, V1, I/2} , V 1 = V  2 =1. We consider the set 

Z = {(x;, y~ ) e GR: u~, h (~l, rll ) ~: u~,h (~2,112), (~k, ~k ) e O(x;, y~, rh), k = 1, 2} 

O(x;, yy, rh) = {(~, 11) ~ I x I: max{l~ - x i I, I r I - y~l} ~< rh} 

of those nodes (xi, yy*) of the grid GR, in the rh-neighbourhood O(xi, y j, rh) of which the values of 
the control u'~ (xi, yj), take different values. We assume that the linear interpolation w1'~-1(~, 11) of 
the values w_~-l(xi, yj) is a concave function apart from an infinitesimally small quantity rh l+b 
(b > 0) in the rh-neighbourhood O(xi*,Yj* rh) of any point (x*,yj*) ~ Z 

T--l,hWm-I ( ~ 1 "  1[~ ~ r  ~!] - -  "~)--t;hwm-l'(~2 , ~ 2 )  ~ W ~ , h  I ( ' ~ 1  + (1 - 'Y)~2' ~tth + ( 1 - V ) ' q 2 ) - r h : + i  

0 << - y <~ 1, (~k,rlk)~ O(xi*,y~,rh), k = 1,2 

When Hypothesis 1 is satisfied we have the following assertion. 

Proposition 7. Suppose that a = 0 and Hypothesis 1 is satisfied in (8.3). Then for any e > 0 one can 
find a subdivision step h ~ (0, 1/~.) and an iteration number m such that for all trajectories (x(-), 



The  solution of  evolut ionary games using the theory  of  Hami l ton-Jacob i  equat ions 931 

y( .))  genera ted  by ,'t l inear interpolat ion u~ of  the strategy values u'~(xi, yj) (8.4) and an arbitrary 
measurable  control  ~(s), ~ ¢ I f rom the initial posi t ion (x0, Y0), limit (7.9) is satisfied. 

9. R E S U L T S  O F  N U M E R I C A L  E X P E R I M E N T S  

The algorithms for constructing the value functions wl and "2, guaranteeing strategies Lr~l, V~2 , punishment 
strategies Lr~2, F~I, acceptable trajectories (xe(.), ye(.)) and Nash equilibrium strategies U °, ~ were implemented on 
a computer. 

Two basic combinations of payoff matricesA 1 andA 2 were used in the numerical experiments, generating three 
or one Nash equilibrium situations in the corresponding bimatrix game [5]. We recall that three equilibria occur 
in "almost s'mgle-type ~ coalition interests: the zig-zags of acceptable situations have different orientations (left 
and right) and intersect at three points (equilibrium situations). One Nash equilibrium situation takes place for 
"almost antagonistic" coalition interests: the zig-zags of acceptable situations have the same orientations (both 
right or both left) and intersect at a single point (equilibrium situation). 

In the first case (three equilibria) we considered the following single-type payoff matricesA 1 andA 2 

A2ffiB2 , C2 Ull - w i 2  - a 2 1  = = = a 2 2 - a 1 2 - - - 3 ,  ~ 2  u22 

In the corresponding antagonistic matrix games the saddle-point situations are the points S P  1 = (1/4, 1/3) for 
m a t r i x A  1 and  S P  2 = (',~3, 1/2) for matrixA 2. In the non-antagonistic bimatrix game there are three Nash equilibrium 
situations: NE1 ffi (0, 0), NE2 -- (1, 1), NE3 = (2/3, 1/3). 

From computer calculations with steps h = 0,1, ~ ffi Ay ffi 0.01, ~p ffi ~q ffi 0.1 we constructed approximate 
value functions w_'~,h, ~ ,  ~ h ,  w2,-~h guaranteeing strategies u~,~, ~2~h and punishment strategies u2mh, ~)lmh. 

The strategies u'~, ~)2~, u2m~, ~ were constructed as follows. In the phase state square I x I of system (2.12) 
there is a switch-over curve which divides the square into two parts. In one, half the values of the controls are zero, 
and in the other unity. Figure I shows the switch-over curves SW1 and SW2 for guaranteeing strategies u'~, ~)T,~. 
The characteristic feature of these curves in that SW 1 passes through the saddle point SP1 and the curve  S W  2 through 
the saddle point SP2. Above the curve SW1 the values of the control ul,mh are equal to unity, and below they are 
zero. To the right of SW2 the values of the control ~ ,h  are equal to unity, and to the left they are equal to zero. 

Figure I also show.,; the acceptable trajectory TR1 -- (x~(-),y~(-)) generated by the guaranteeing strategies u'~, 
~,~. Trajectory TRI leaves the initial position IP = (1/5, 4/5) and tends to the Nash equilibrium situation NE~. It 
consists of two-characteristics of the Hamilton-Jacobi equation (6.1) which are sections of straight lines pointing 
to the vertices of the square. Switching-over from one characteristic to the other occurs at the switch-over curve 
(which in this case is SW~). 

In the second case (one equilibrium) we considered the following almost-antagonistic payoff matricesA ~ and 
A 2 

Y 

I I fP ! 

I I 
I 8,J / 

Fig. 1. Fig. 2. 



932 A . M .  Taras'yev 

At B! A2=B3 I ~ ~l C2=a121 2 2 +a22=. .  6 
= , = , - a 1 2  - a 2 !  

2 2 _a72=_3,  ot2=a22,a21=... 4 ~1 = a22 

In the corresponding antagonistic matrix games the saddle-point situations are the points SP1 = (1/4, 1/3) for 
matrixA 1 and SP2 = (2/3, 1/2) forA 2. In the non-antagonistic bimatrix game there is only one Nash equilibrium 
situation NE = (2/3, 1/3). 

The following numerical results were obtained for the evolutionary game of two coalitions with payoff matrices 
A 1 = B1,A 2 = B3. As in the first case, the guaranteeing strategy uTj, is given by the switch-over curve SW1. The 
structure of the guaranteeing strategy ~ is determined by the switch-over curve SW3, which is shown in Fig. 2. 
This curve, like SW2, passes through the saddle-point SP2, but has a different direction. To the left of SW3 the values 
of  the control u ~  are unity, and to the right they are zero. 

Figure 2 also shows the acceptable trajectory TR2 = (x~(.), ye(.)) generated by the guaranteeing strategies u~n~, 
u '~.  Trajectory TR 2 leaves the initial position 1P = (1/5, 4/5) and approaches the point of intersection of the switch- 
over curves SW1 and SW2. It consists of segments of the characteristics of Eq. (6.1) directed towards the vertices 
of the square. Switch-over from one characteristic to another occurs at the switch-over curves SW1, SW3. In other 
words, trajectory TR2 has "evolutionary-revolutionary" properties: "evolution" takes place in the characteristic 
intervals and "revolution" at the switch-over curves. 

A feature of trajectory TR2 is that it does not converge to the Nash equilibrium situation NE, which is typical 
of the trajectories in classical evolutionary models with replicatory dynamics [7-10], but tends to a new stable 
situation: the point of intersection of the switch-over curves SWI and SW3. We note that the values of the global 
payoff functionals Jm of both coalitions on the acceptable trajectory TR2 are better than their values on trajectories 
leaving the same initial position IP, but tending to the Nash equilibrium position NE. 

I wish to thank  A. V. Kyazhimskii for suggesting the p rob lem and for  his interest, and A. I. Subbot in 
for  discussing the results. I also thank N. V. Mel 'n ik  for his help in running the algorithm on a computer .  
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